Sparse Regulatory Networks.
نویسندگان
چکیده
In many organisms the expression levels of each gene are controlled by the activation levels of known "Transcription Factors" (TF). A problem of considerable interest is that of estimating the "Transcription Regulation Networks" (TRN) relating the TFs and genes. While the expression levels of genes can be observed, the activation levels of the corresponding TFs are usually unknown, greatly increasing the difficulty of the problem. Based on previous experimental work, it is often the case that partial information about the TRN is available. For example, certain TFs may be known to regulate a given gene or in other cases a connection may be predicted with a certain probability. In general, the biology of the problem indicates there will be very few connections between TFs and genes. Several methods have been proposed for estimating TRNs. However, they all suffer from problems such as unrealistic assumptions about prior knowledge of the network structure or computational limitations. We propose a new approach that can directly utilize prior information about the network structure in conjunction with observed gene expression data to estimate the TRN. Our approach uses L(1) penalties on the network to ensure a sparse structure. This has the advantage of being computationally efficient as well as making many fewer assumptions about the network structure. We use our methodology to construct the TRN for E. coli and show that the estimate is biologically sensible and compares favorably with previous estimates.
منابع مشابه
The Role of Regulatory in Price Control and Spectrum Allocation to Competing Wireless Access Networks
With the rapid growth of wireless access networks, various providers offer their services using different technologies such as Wi-Fi, Wimax, 3G, 4G and so on. These networks compete for the scarce wireless spectrum. The spectrum is considered to be a scarce resource moderated by the spectrum allocation regulatory (“regulatory” for short) which is the governance body aiming to maximize the socia...
متن کاملOn Construction of Sparse Probabilistic Boolean Networks from a Prescribed Transition Probability Matrix
Probabilistic Boolean Networks (PBNs) are useful models for modeling genetic regulatory networks. In this paper, we propose efficient algorithms for constructing a sparse probabilistic Boolean network when its transition probability matrix and a set of possible Boolean networks are given. This is an interesting inverse problem in network inference and it is important in the sense that most micr...
متن کاملComparison of MLP NN Approach with PCA and ICA for Extraction of Hidden Regulatory Signals in Biological Networks
The biologists now face with the masses of high dimensional datasets generated from various high-throughput technologies, which are outputs of complex inter-connected biological networks at different levels driven by a number of hidden regulatory signals. So far, many computational and statistical methods such as PCA and ICA have been employed for computing low-dimensional or hidden represe...
متن کاملSparse essential interactions in model networks of gene regulation
Gene regulatory networks typically have low in-degrees, whereby any given gene is regulated by few of the genes in the network. What mechanisms might be responsible for these low in-degrees? Starting with an accepted framework of the binding of transcription factors to DNA, we consider a simple model of gene regulatory dynamics. In this model, we show that the constraint of having a given funct...
متن کاملOn the identification of sparse gene regulatory networks
A linear dynamical model structure is introduced to describe the gene interactions in a sparse gene regulatory network, which generalizes the set-up in [9]. Techniques from robust statistics based on L1-minimization are introduced to estimate the underlying sparse network from a limited number of observations obtainable from micro-array data. Simulation experiments are carried out to analyze th...
متن کاملUltranet: efficient solver for the sparse inverse covariance selection problem in gene network modeling
SUMMARY Graphical Gaussian models (GGMs) are a promising approach to identify gene regulatory networks. Such models can be robustly inferred by solving the sparse inverse covariance selection (SICS) problem. With the high dimensionality of genomics data, fast methods capable of solving large instances of SICS are needed. We developed a novel network modeling tool, Ultranet, that solves the SICS...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The annals of applied statistics
دوره 4 2 شماره
صفحات -
تاریخ انتشار 2010